skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ge, Lingrui"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, we show that one-dimensional discrete multifrequency quasiperiodic Schrödinger operators with smooth potentials demonstrate ballistic motion on the set of energies on which the corresponding Schrödinger cocycles are smoothly reducible to constant rotations. The proof is performed by establishing a local version of strong ballistic transport on an exhausting sequence of subsets on which reducibility can be achieved by a conjugation uniformly bounded in the Cℓ-norm. We also establish global strong ballistic transport under an additional integral condition on the norms of conjugation matrices. The latter condition is quite mild and is satisfied in many known examples. 
    more » « less